\(\int \frac {\sqrt {\cos (c+d x)} (A+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^2} \, dx\) [160]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 126 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\frac {4 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(A-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

4*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+1/3*(A-5*C)*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-1/3*(A+C)*cos(d*x+c)
^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2+1/3*(A-5*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d/(1+cos(d*x+c))

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3121, 3056, 2827, 2720, 2719} \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\frac {(A-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}+\frac {4 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^2,x]

[Out]

(4*C*EllipticE[(c + d*x)/2, 2])/(a^2*d) + ((A - 5*C)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + ((A - 5*C)*Sqrt[Co
s[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a
*Cos[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\sqrt {\cos (c+d x)} \left (\frac {3}{2} a (A-C)+\frac {1}{2} a (A+7 C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2} \\ & = \frac {(A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\frac {1}{2} a^2 (A-5 C)+6 a^2 C \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{3 a^4} \\ & = \frac {(A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {(A-5 C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}+\frac {(2 C) \int \sqrt {\cos (c+d x)} \, dx}{a^2} \\ & = \frac {4 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(A-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.81 (sec) , antiderivative size = 696, normalized size of antiderivative = 5.52 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=-\frac {2 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}+\frac {10 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (a+a \cos (c+d x))^2 \sqrt {1+\cot ^2(c)}}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (-\frac {8 C \cot \left (\frac {c}{2}\right )}{d}-\frac {8 C \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {2 (A+C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(a+a \cos (c+d x))^2}-\frac {4 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (a+a \cos (c+d x))^2} \]

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^2,x]

[Out]

(-2*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]
*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcT
an[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (10*C*Cos
[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x
- ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]
]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos[c/2 + (d*x)/2
]^4*Sqrt[Cos[c + d*x]]*((-8*C*Cot[c/2])/d - (8*C*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/d + (2*Sec[c/2]*Sec
[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) + (2*(A + C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))
/(a + a*Cos[c + d*x])^2 - (4*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4},
 Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 +
Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((S
in[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]
)/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(a + a*Cos[c + d*x])^2
)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(347\) vs. \(2(168)=336\).

Time = 7.03 (sec) , antiderivative size = 348, normalized size of antiderivative = 2.76

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 C \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+38 C \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-15 C \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A +C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(348\)

[In]

int((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-24*C*cos(1/2*d*x+1/2*c)^6-10*C*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*
x+1/2*c)^3-24*cos(1/2*d*x+1/2*c)^3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(
cos(1/2*d*x+1/2*c),2^(1/2))+2*A*cos(1/2*d*x+1/2*c)^4+38*C*cos(1/2*d*x+1/2*c)^4-3*A*cos(1/2*d*x+1/2*c)^2-15*C*c
os(1/2*d*x+1/2*c)^2+A+C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2
*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.52 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (6 \, C \cos \left (d x + c\right ) - A + 5 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (i \, A - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-i \, A + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 12 \, {\left (-i \, \sqrt {2} C \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} C \cos \left (d x + c\right ) - i \, \sqrt {2} C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 12 \, {\left (i \, \sqrt {2} C \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} C \cos \left (d x + c\right ) + i \, \sqrt {2} C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(2*(6*C*cos(d*x + c) - A + 5*C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(-I*A + 5*I*C)*cos(d*x + c)^2
- 2*sqrt(2)*(I*A - 5*I*C)*cos(d*x + c) + sqrt(2)*(-I*A + 5*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*s
in(d*x + c)) - (sqrt(2)*(I*A - 5*I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(-I*A + 5*I*C)*cos(d*x + c) + sqrt(2)*(I*A -
5*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 12*(-I*sqrt(2)*C*cos(d*x + c)^2 - 2*I*sqrt
(2)*C*cos(d*x + c) - I*sqrt(2)*C)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x +
 c))) + 12*(I*sqrt(2)*C*cos(d*x + c)^2 + 2*I*sqrt(2)*C*cos(d*x + c) + I*sqrt(2)*C)*weierstrassZeta(-4, 0, weie
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^2, x)